Douglas J. Blackiston

Address: Tufts University Department of Biology & Harvard Wyss Institute for Biologically Inspired Engineering 200 Boston Ave Suite 4600 Medford, MA 02155

E-mail: douglas.blackiston@tufts.edu Website: douglas-blackiston.weebly.com

POSITIONS AND EDUCATION

2019 – Present	Visiting Scholar, Principal Investigator Wyss Institute for Biologically Inspired Engineering Harvard University
2018 – Present	Principal Scientist, Principal Investigator Allen Discovery Center, Department of Biology Tufts University
2015 – 2018	Senior Scientist Allen Discovery Center, Department of Biology Tufts University
2012 – 2014	Post-Doctoral Fellow Department of Biology Tufts University
2007 – 2011	Post-Doctoral Fellow The Forsyth Institute, Harvard Medical School Center for Regenerative and Developmental Biology
2002 – 2007	<i>Ph.D., Biology</i> Georgetown University , Washington DC Dr. Martha Weiss and Dr. Elena Silva Casey, Advisors. Thesis: Learning and memory in larval and adult Lepidoptera
2002	Bachelor of Science, Biological Sciences (Minor: Education) McDaniel College, Westminster, MD Howard Hughes Research Fellow

PUBLICATIONS

25. **Blackiston, D**., Kriegman, S., Bongard, J., & Levin, M. (2023). Biological Robots: Perspectives on an Emerging Interdisciplinary Field. <u>Soft Robotics</u>. 10.1089/soro.2022.0142.

24. Kudithipudi, D., Anguilar-Simon, M., Babb, J., Bazhenov, M., **Blackiston, D**.,... et. al. (+38 others). (2022). Biological underpinnings for lifelong learning machines. <u>*Nature Machine Intelligence*</u>. 4 (3), 196-210.

23. **Kriegman, S. *, Blackiston, D**. *, Levin, M., Bongard, J. (2021). Kinematic selfreplication in reconfigurable organisms. *Proceedings of the National Academy of Sciences*. 118 (49).

*co-first author

22. **Blackiston, D**., Lederer, E., Kriegman, S., Bongard, J., Levin, M. (2021). A cellular platform for the development of synthetic living machines. <u>Science Robotics</u> 6.52 (2021).

21. Kriegman, S. *, Blackiston, D. *, Levin, M., Bongard, J. (2020). A scalable pipeline for designing reconfigurable organisms. *Proceedings of the National Academy of Sciences*. (4) 1853-1859.

*co-first author

20. **Blackiston, D**., Vien, K., Levin, M. (2018). Serotonergic stimulation induces nerve growth and promotes visual learning following posterior eye grafts in Xenopus tadpoles. *Nature Regenerative Medicine*. 2 (1),8.

19. **Blackiston, D.**, Levin, M. (2017). Reversals of bodies, brain, and behavior: quantitative analysis of laterality and its disturbance in model species. *Neuromethods*. 667-694.

18. Morokuma, J., Durant, F., Williams, K.B., Finkelstein, J.M, **Blackiston, D**., Clements, T., Reed, D., Roberts, M., Jain, M., Kimel, K., Trauger, S., Wolfe, B., Levin, M. (2017). Planarian regeneration in space: persistent anatomical, behavioral, and bacteriological changes induced by space travel. <u>*Regeneration*</u>. 4 (2), 85-102.

17. Rothman, G.*, Blackiston, D.*, Levin, M. (2016). Color and intensity discrimination in *Xenopus laevis* tadpoles. <u>Animal Cognition</u>. 19(5): 911-919 *co-first author with mentored undergraduate

16. **Blackiston, D.**, Shomrat, T., Levin, M. (2015). The stability of memories during brain remodeling: a perspective. <u>*Communicative and Integrative Biology*</u>. 8(5): e1073424

15. Lobikin, M., Lobo, D., **Blackiston, D.**, Martynuik, C.J., Tkachenko, E., Levin, M. (2015). Serotonergic regulation of melanocyte conversion: a bioelectric network explains stochastic all-or-none hyperpigmentation. <u>Science Signaling</u>. 8(397): ra99.

14. **Blackiston, D.**, Anderson, G., Rahman, N., Bieck, C., Levin, M. (2015). A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms. *Neurotherapeutics*. 12(1): 170-184.

13. Vandenberg, L., **Blackiston, D.**, Rea, A., Dore, T., Levin, M. (2014) Left-right *patterning* in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions. *International Journal of Developmental Biology*. doi: 10.1387/ijdb.140215ml.

12. **Blackiston, D.**, Levin, M. (2013). Inversion of left-right asymmetry alters performance of *Xenopus* tadpoles in non-lateralized cognitive tasks. *Animal Behaviour*. 86(2): 459-466.

11. **Blackiston, D.**, Levin, M. (2013). Ectopic eyes outside the head in *Xenopus* tadpoles provide sensory data for light-mediated learning. *Journal of Experimental Biology*. 216(6): 1031-1040.

10. Pai, V.P., Vandenberg, L.N., **Blackiston, D.**, Levin, M. (2012). Neurally derived tissues in *Xenopus laevis* embryos exhibit a consistent bioelectrical left-right asymmetry. <u>Stem Cells International</u>. 2012:353491

9. Blackiston, D., Levin, M. (2011). Aversive training methods in *Xenopus laevis*: general principles. <u>Cold Spring Harbor Protocols</u>. doi 10.1101/pdb.top068338.

8. **Blackiston, D.**, Shomrat, T., Granta, C., Levin, M. (2011). A second-generation device for automated training and quantitative behavior analyses of molecularly tractable model organisms. <u>*PLoS ONE*</u>. 5(12):e14370.

7. **Blackiston, D.**, Briscoe, A., Weiss, M. (2011). Color vision and learning in the monarch butterfly, *Danaus plexippus* (Nymphalidae). *Journal of Experimental Biology*. 214(3): 509-520.

6. **Blackiston, D.**, Adams, D., Lemire, J., Levin, M. (2010). Transmembrane potential of GlyCI-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. *Disease Models and Mechanisms*. 4(1):67-85.

5. **Blackiston, D.**, Vandenberg, L., Levin, M. (2010). High throughput *Xenopus laevis* immunohistochemistry using agarose sections. <u>*Cold Spring Harbor Protocols*</u>. doi: 10.1101/pdb.prot5532.

4. **Blackiston, D.**, McLaughlin, K., Levin, M. (2009). Bioelectric controls of cell proliferation: Ion channels, membrane voltage, and the cell cycle. <u>*Cell Cycle*</u> 8(21): 3519-3528

3. Morokuma, J., **Blackiston, D.**, Adams, D., Seebohm, G., Trimmer, B., Levin, M. (2008). Modulation of KCNQ1 and KCNE1 K+ channel function induces a neoplastic phenotype in melanocytes. *Proceedings of the National Academy of Sciences*. 105(43):16608-13

2. Blackiston, D., Silva Casey, E., Weiss, M. (2008). Persistence of memory through metamorphosis in *Manduca sexta*. <u>*PLoS ONE*</u>. 3(3): e1736

1. Morokuma, J., **Blackiston, D.**, Levin, M. (2008). KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in *Xenopus laevis* embryos. <u>*Cellular Physiology and Biochemistry*</u>. 21(5-6):357-72.

RESEARCH SUPPORT

DoD (RDT&E), Network C3I, (BAA CRREL-23-0001), 2023-2027

J. Bongard, <u>D. Blackiston</u>, M Levin, CRREL. *Biological Sensors for Remote Environments* Role: Co-Principal Investigator Total Funds: \$8,448,485

Sloan Foundation Matter to Life (G-2021-16495) 2022-2024

D. Inber, <u>D. Blackiston</u>, J. Bongard, M. Levin, W. Shih, W. Wong, P. Yin. *Principles of molecular and cellular self-organization* Role: Co-Principal Investigator (senior personnel phase I, Co-I phase II)
Total Funds: \$1,500,000

Berggruen Institute, 2023-2024

<u>D. Blackiston</u> & C. Sinders. *Human/Embodied Machine Interactions (interactive program development)*

Role: Principal Investigator Total Funds: \$36,500

Copernicus Science Center in Warsaw (944/KEI/2022/E MTA), 2023

<u>D. Blackiston</u>. *Human 2.0 Exhibition: The Future is Today* Role: Principal Investigator Total Funds: \$4.851

Diverse Intelligences Initiative (TWCF0552), 2021-2023

<u>D. Blackiston</u>. Engineered behavior and swarm dynamics in synthetic multicellular systems. Funding transferred due to COI. Role: Principal Investigator Total Funds: \$234,000

DARPA L2M Program, 2018-2022

M. Levin, J. Bongard., S. Walker. *Somatic computation via bioelectricity for novel life-time learning machines* Role: Co-Author, Senior Personnel Total Funds: \$1,900,000

The Paul G. Allen Frontiers Group, 2015-2020

Reading and writing the morphogenetic code Role: Primary Scientist, Participant Only Total Funds: \$10,000,000

NIH R01 Research Project Grant (5R01MH081842-02), 2010

M. Levin. Automated analysis of learning and memory for neuro-developmental studies. Role: Co-Author, Senior Personnel Total Funds: \$1,151,250

NIH F32 Individual National Research Service Award (1F32NS060654-01A1), 2009 <u>D. Blackiston</u>. Effects of CNS asymmetry inversion on zebrafish and Xenopus learning and memory. Role: Principal Investigator Total Funds: \$200,370

NIH T32 Institutional National Research Service Award (5T32DE007327-09), 2007

<u>D. Blackiston</u>. Depolarization of membrane potential induces a neoplastic phenotype in melanocytes Role: Principal Investigator Total Funds: \$187,410

PATENTS

- 1. Engineered Multicellular Organisms. US No. 63/136,564. International No. PCT/US2021/013105
- 2. Engineered Multicellular Organisms and the Kinematic Self-Replication Thereof. App. No. 17/647,847

TEACHING EXPERIENCE

Independent Course Instructor, Tufts University

BIO52: Experiments in Cell Biology (14 students)

Topics: Yeast genetics/cell biology, developmental biology, cell physiology **Course evaluations** (1-5 scale, poor-excellent):

Accomplishing Objectives: 4.71 (Excellent) Instructors Organization: 4.57 (Excellent) Timeliness of Feedback: 4.57 (Excellent) Communication: 4.71 (Excellent)

Use of Time: 4.71 (**Excellent**) Explaining Ideas: 4.71 (**Excellent**), Usefulness of Feedback: 4.29 (**Very Good**) Overall Quality: 4.57 (**Excellent**)

BIO196: Investigations in Cell and Developmental Biology (16 students)

Topics: Stem cell biology, bio-hybrid machines, biological modeling/simulation, bioethics

Course evaluations (1-5 scale, poor-excellent):Accomplishing objectives: 4.75 (Excellent)UsOut of Class Activities: 4.81 (Excellent)CoOverall Quality: 4.78 (Excellent)Co

Úse of Time: 4.69 (**Excellent**) Course Interest: 4.81 (**Excellent**)

Team Taught Course Instructor, Tufts University

BIO184: Special Topics in Developmental Biology (14 students,)

Roles: Laboratory design and prep, assessments, interactive demos, live cell/organism imaging, introduction to experimental design

Topics: Role of cellular physiology in development Laboratories in motion: see science in action Quantifying learning and memory in aquatic vertebrates Melanocyte development and migration in *Xenopus laevis* Introduction to biostatistics: non-parametric and parametric analysis

Teaching Assistant, Georgetown University

BIOL373: Developmental Biology (25 students) BIOL375: Plant Animal Interactions (20 students) BIOL104: Foundations in Biology (175 students)

Education Team Member – Reducing Attrition Among Minority Biology Majors

Georgetown team member at **Science Education for New Civic Engagements** (SENCER) summer institute (2003). Investigated the attrition of minority scholars in Georgetown University's Biology major. Developed a new onboarding program, enhanced existing mentorship opportunities, developed tracking statistics for minority scholars, worked with collaborators at Howard University, and performed outreach with local D.C. area high schools.

Public School Teaching, Secondary Education

Westminster High School, Maryland, 2001 – co-instructed freshman chemistry under faculty supervision

Westminster Middle School, Maryland, 2001 – independently taught two sections of 7th grade biology

STUDENT MENTORING

Max Rubenstein, HS student, class of 2024, FLHS Research Program – Effect of buoyancy on developing epidermis self-organization

Longan Su, Junior 2022 – Development of multi-ciliated cells in 2d and 3d culture Melanie Chien, Senior Thesis 2021 – Self-assembly of multi-ciliated cells in developing *Xenopus* ectoderm.

Emma Lederer, Research Technician 2020 – Leveraging *Xenopus* tissues to develop biomachines

- published, first author on manuscript

Daniel Lukason, Graduate Student 2019 – Central nervous system repair in *Xenopus* embryos. Served as a committee member and comprehensive exam reviewer

Sajani Clerk, Sophomore 2018 - Regeneration of optic nerve following mechanical damage and light induced retinal toxicity

Lauren Clore, Sophomore 2018 - Behavior and information processing in engineered tissues Khanh Vein, Sophomore 2015 – The effects of embryonic SSRI exposure on vertebrate cognition

- published, co-author on manuscript

Dylan Murphy, Senior 2015 – Bioelectric control of muscle regeneration in *Xenopus laevis* Gabriel Rothman, Junior 2014 – Memory retention and extinction in *Xenopus* tadpoles - published, first author on manuscript

Nikita Rahman, Senior 2013 – Role of embryonic serotonin on axon guidance - published, co-author on manuscript

Clara Bieck, undergraduate 2010-2013 – Role of bioelectricity in eye innervation - published, co-author on manuscript

Nidhi Chillara, Junior 2013 – Associative learning in planarian flatworms Mary Rose Branch, High School Student 2010-2012 – Regeneration and learning in axolotls Sarah Carpenter, Senior 2011 – Motion tracking algorithms and data analysis Garrett Friedman, Sophomore 2010 – Eye regeneration in *Xenopus laevis* embryos Rebecca DiBiasi, Sophomore 2010 – Visual learning in *Xenopus* tadpoles Ashley Amick, Senior Thesis 2006 – Appetitive learning in *Manduca sexta*

Selected as one of five students for a department-wide seminar, passed with distinction

AWARDS

- 2024 Polaris Dawn Biological Payload (shuttle mission)
- 2023 Museum Exhibit, Copernicus Science Centre "Human 2.0"
- 2023 Visions of the Wyss Award Winner
- 2022 Outstanding Paper of the Year, ALIFE
- 2022 Museum Exhibit, CCCB Barcelona "BRAINS"
- 2022 Museum Exhibit, MARTa Herford "Organic and Non-organic Lifeforms"
- 2021 Cozzarelli Prize Recipient Awarded by the National Academy of Sciences for the most impactful research in engineering and applied sciences
- 2021 Altmetric top 100, 3.4 million entries
- 2021 Outstanding Paper of the Year Award by The International Society for Artificial Life
- 2020 Top 10 most influential BioTech Projects, Project Management Institute
- 2020 Museum Exhibit, Design Museum of London Beazley Designs of the Year
- 2020 New York Times Science Frontpage Feature
- 2019 Wyss Institute Technology and Research Award Winner
- 2016 Tufts Vision Scientist, Tufts Medical School
- 2013 Best Scientific Talk Award, SDB Northeast Meeting
- 2009 NIH F32 Ruth L. Kirschstein National Research Service Award, Tufts University
- 2007 NIH T32 Training Grant Recipient, Forsyth Institute, Harvard University
- 2006 Outstanding Graduate Student in Biology Award, Georgetown University
- 2006 Runner-up, Best Student Poster SDB National Meeting
- 2005 National Denali Award Recipient
- 2005 Best Student Talk, Lepidopterists Society National Meeting
- 2004 Graduate School Assistantship, Georgetown University
- 2003 NSF Graduate Research Fellowship Honorary Mention
- 2002 Howard Hughes Research Fellow
- 1998 Rotary Scholarship

INVITED TALKS AND CONFERENCE PRESENTATIONS

- **Kavli Frontiers of Science Symposium, National Academy of Sciences**. Irvine, CA. Computer designed living systems: living robots or organisms?
- **Keynote Speaker. Boston College Biology Retreat**. Portsmouth, NH. Modular organisms: the plasticity of biological form.
- **Materials Research Society**. Boston, MA. Modular biomachines built from amphibian stem cells.
- **Keynote speaker. Berggruen Institute**, Academy of Arts and Sciences, Cambridge MA. The futures of life.
- 2022 Elmira College Lecture Series in the Sciences, Invited Speaker. Elmira, NY. Using A.I. and developmental biology to engineer biological machines.
- **Materials Research Society**. Boston, MA. Computer designed organisms built from embryonic amphibian cells.
- **Geneva Science and Diplomacy Anticipator (GESDA)**. Geneva, Switzerland. Science breakthrough radar.
- **Society for Developmental Biology**. Virtual Meeting. Computer designed organisms built from embryonic amphibian cells.
- **Massachusetts Life Science Innovations**. Boston, MA (virtual meeting). Living machines built from amphibian stem cells.
- **Society for Developmental Biology**. Chicago, IL (virtual meeting). Computer designed living machines built from amphibian stem cells.
- **Electronics Resurgence Initiative Summit, DARPA** P.I. Meeting. Invited speaker. Detroit, MI. A scalable pipeline for designing reconfigurable lifeforms.
- **Society for Developmental Biology**. Boston, MA. Exploring the brain-body interface: animals with ectopic eyes as models for CNS plasticity, development, and regenerative medicine.
- **DARPA Lifetime Learning Machines (L2M)** P.I. Meeting, Invited speaker. Washington, DC. Control of patterning and behavior *of in vitro* cellular automata.
- **Society for Developmental Biology**. Boston, MA. Serotonergic pathways and membrane potential promotes innervation of eye grafts in *Xenopus* tadpoles.
- **Tufts University Medical School**, Invited seminar speaker. Boston, MA. A novel method for inducing nerve growth and innervation control: serotonergic signaling mechanisms.
- **University of Massachusetts Amherst**, Invited Seminar Speaker. Amherst, MA. Exploring the cognitive effects of CNS alterations in *Xenopus* tadpoles.
- **McDaniel College**, Invited Seminar Speaker. Westminster, MD. Coming full circle, research from the perspective of a liberal arts background.
- **Society for Developmental Biology**, Northeast. Woods Hole, MA. Plasticity of the brain-body interface: ectopic eyes placed onto tadpole tails confer functional vision.
- **Elmira University**, Invited Seminar Speaker. Elmira, NY. Plasticity of the vertebrate nervous system.
- **Society for Developmental Biology**. Chicago, IL. Automated training and quantitative behavior analysis of molecularly tractable model organisms.
- **Society for Developmental Biology**. Albuquerque, NM. Transmembrane voltage gradient in GlyR-expressing niche cells controls behavior of neural crest derivatives *in vivo*.
- **Society for Developmental Biology**. San Francisco, CA. Control of embryonic stem cell proliferation and migration can be controlled in vivo by pharmacological modulation of endogenous ion channels.
- **NIH NIDCR Annual Research Training Session**, Invited Seminar Speaker. Washington, DC. Control of embryonic stem cell proliferation and migration can be controlled in vivo by pharmacological modulation of endogenous ion channels.

- 2006 **Society for Developmental Biology**. Ann Arbor, MI. Memory through metamorphosis in *Manduca sexta*.
- 2005 **Lepidopterist Society**. Sierra Vista, AZ. Can a caterpillar learn something a moth will remember?
- 2005 **Society for Developmental Biology**. San Francisco, CA. Effect of larval conditioning on adult *Manduca sexta* behavior.
- 2005 NIH Zfig, Invited Speaker. Memory through metamorphosis in Manduca sexta.
- 2004 Lepidopterist Society. College Park, MD. Color learning in Monarch butterflies.

SELECTED PRESS HIGHLIGHTS

New York Times Interview: <u>https://www.nytimes.com/2020/04/03/science/xenobots-robots-</u> <u>frogs-xenopus.html</u>

Scientific American Special: <u>https://www.youtube.com/watch?v=8WyWFAS96ac</u> Bloomberg Live Interview: <u>https://www.youtube.com/watch?v=akchZ4eG9z8</u>

BBC: http://news.bbc.co.uk/2/hi/science/nature/4181197.stm

CNN: <u>https://www.youtube.com/watch?v=Q_pFkP1PL8w&feature=emb_logo</u>

Engadget: <u>https://www.engadget.com/2020-01-15-uvm-tufts-living-robots-xenobots.html</u> Forbes: https://www.forbes.com/sites/simonchandler/2020/01/14/worlds-first-living-robot-

invites-new-opportunities-and-risks/#325003d43caf

Gizmodo: https://gizmodo.com/made-entirely-from-cells-these-adorable-xenobots-are-1840996434

Popular Science: https://www.popsci.com/technology/xenobots/

The Guardian: <u>https://www.theguardian.com/science/2020/jan/13/scientists-use-stem-cells-</u> from-frogs-to-build-first-living-robots

The Scientist: <u>https://www.the-scientist.com/news-opinion/algorithm-designs-robots-using-</u> <u>frog-cells-66961</u>

Smithsonian: https://www.smithsonianmag.com/innovation/scientists-assemble-frog-stemcells-first-living-machines-180973947/

Wired: https://www.wired.com/story/xenobot/

AFFILIATIONS, MEMBERSHIPS, AND SERVICE

The Wyss Institute at Harvard University Visiting Scholar Society for Developmental Biology Materials Research Society American Association of Colleges and Universities Boston Scholars Program Member